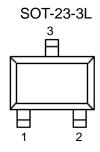
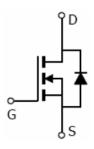


Description

The ACE3400BBM+ uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications.

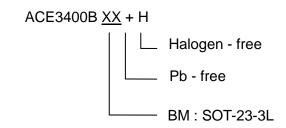

Features

- VDS 30V
- RDS(ON)@V_{GS}=10V, I_{DS}=5.2A, Typ 24mΩ
- RDS(ON)@V_{GS}=4.5V, I_{DS} =5A, Typ 27m Ω
- Fast switching speed
- Low threshold voltage (0.8V) makes this device ideal for portable equipment


Absolute Maximum Ratings

Abootato maximam ratingo									
Parameter			Max	Unit					
Drain-Source Voltage		V_{DSS}	30	٧					
Gate-Source Voltage		V_{GSS}	±12	V					
Drain Current	Continuous (Note 1)	I _D	5.2	А					
	Pulsed (Note 2)	I _{DM}	30						
Power Dissipation (Note 1)		P _D	1	W					
Operating and storage junction temperature range		T_J, T_{STG}	-55~+150	$^{\circ}\!\mathbb{C}$					

Packaging Type



SOT-23-3L	Description	Function
1	G	Gate
2	S	Source
3	D	Drain

Ordering information

Electrical Characteristics

 $T_A=25^{\circ}C$, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
Static									
Drain-source breakdown voltage	V _{(BR)DSS}	V_{GS} =0V, I_D =250 μ A	30	34		V			
Zero gate voltage drain current	I _{DSS}	V_{DS} =24V, V_{GS} =0V			1	μΑ			
Gate threshold voltage	$V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{DS}=250\mu A$	0.7	0.8	1	V			
Gate leakage current	I_{GSS}	$V_{GS}=\pm 12V$, $V_{DS}=0V$			±100	nA			
Drain-source on-state resistance		V_{GS} =10V, I_{D} =5.2A		24	28	mΩ			
	R _{DS(ON)}	V_{GS} =4.5V, I_{D} =5A		27	33				
		V _{GS} =2.5V, I _D =4A		39	52				
Forward transconductance	g FS	V_{DS} =5 V , I_{D} =5 A	10	15		S			
Diode forward voltage	V_{SD}	I_{SD} =1A, V_{GS} =0V		0.71	1	V			
Turn-on delay time	t _{d(on)}	V_{DS} =15V, R_L =2.3 Ω ,			18				
Turn-off delay time	t _{d(off)}	V_{GS} =10V, R_{GEN} =3 Ω			70	ns			
Input capacitance	Ciss	\/ 0\/ \/ AE\/		697					
Output capacitance	Coss	V _{GS} =0V, V _{DS} =15V, f=1.0MHz		259		pF			
Reverse transfer capacitance	Crss			308					

Note: 1. DUT is mounted on a 1in 2 FR-4 board with 2oz. Copper in a still air environment at 25 $^\circ$

^{2.} Repetitive rating, pulse width limited by junction temperature.

Typical Performance Characteristics

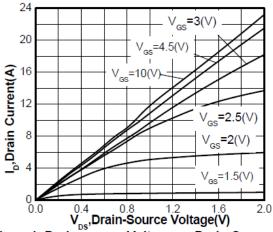


Figure 1. Drain-source Voltage vs Drain Current

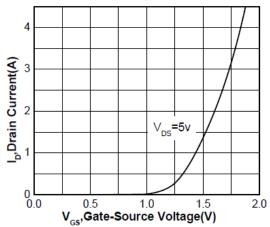
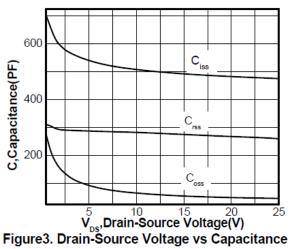



Figure 2. Gate-Source Voltage vs Drain Current

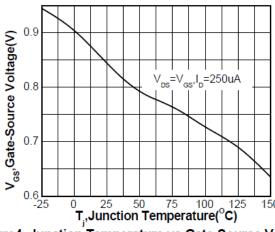


Figure 4. Junction Temperature vs Gate-Source Voltage

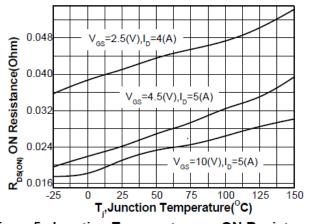
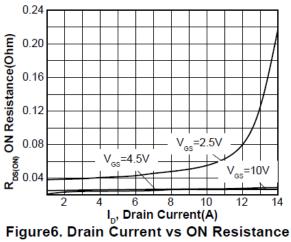
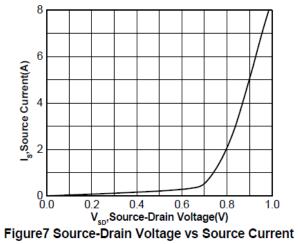
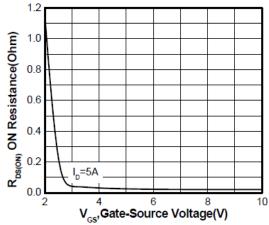
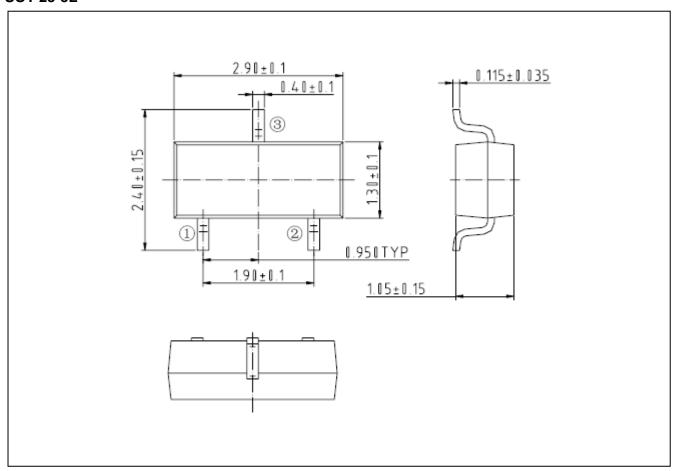




Figure 5. Junction Temperature vs ON Resistance

Typical Performance Characteristics




Figure8. Gate-Source Voltage vs ON Resistance

4

Packing Information

SOT-23-3L

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/